

Numerical Simulation of Ice Ridge Breaking

Aleksei ALEKSEEV, EMSHIP student

Robert BRONSART, Prof. University of Rostock Quentin HISETTE, Hamburg Ship Model Basin

February 2nd 2016 Rostock

Goal

To develop a **numerical solver** capable of simulating **ship breaking** through an **ice ridge**

Solution Steps

- Ice ridges
- Discrete Element Method
- Software development
- Validation & Results
- Conclusions & Proposals

Ice ridges

• Dimensions

Source: Ship Breaking Through Ice Ridges by D.Ehle

Configuration of ice ridge

DEM – numerical method for calculation of motion of large number of particles

Application in:

- Soil mechanics
- Rock engineering
- Geophysics
- Mineral processing
- Powder metallurgy

EMship+

DEM – numerical method for calculation of motion of large number of particles

Application in:

- Soil mechanics
- Rock engineering
- Geophysics
- Mineral processing
- Powder metallurgy
- Ice-related

simulations?

Discrete Element Method

EMship+

• Ice ridge as an assembly of discrete elements

• Ship as a discrete element with special features

Introducing ship hull into simulation

Quaternions & Spatial Orientation

EMsh

Ship Buoyancy and Propulsion

Ship Buoyancy and Propulsion

EMsh

EMship Advanced Design

• Rectilinear degrees of freedom

Rotational degrees of freedom

Predictor – Corrector Numerical Solver

1. Predictor step

• Rectilinear degrees of freedom $r = r + \dot{r}dt + \ddot{r}\frac{dt^2}{2}$ $\dot{r} = \dot{r} + \ddot{r}dt$ • Rotational degrees of freedom $q = q + \dot{q}dt + \ddot{q}\frac{dt^2}{2}$ $\dot{q} = \dot{q} + \ddot{q}dt$

2. Corrector step

Rectilinear degrees of freedom

$$r = r + c_0 \Delta \ddot{r}$$

 $\dot{r} = \dot{r} + c_1 \Delta \ddot{r}$

• Rotational degrees of freedom

$$q = q + c_0 \Delta \ddot{q}$$
$$\dot{q} = \dot{q} + c_1 \Delta \ddot{q}$$
$$\ddot{q} = \ddot{q} + c_2 \Delta \ddot{q}$$

Forces Calculation

○ Ice ridges ○ DEM ○ Software 1 ○ Software 2 ○ Software 3 ○ Results ○ Conclusions 17

Drag

Gravity

Cohesion

Translation

Lindqvist ice resistance theory

EMship+ Advanced Design

Conclusions

- Flexible software for ship breaking through an ice ridge
- DEM is suitable to model ice/hull interaction
- Calibration of forces models and validation is required

Proposals

- Computational speed
- Level ice resistance
- Development towards brash ice, ice floes, etc.